
Intelligent Agents for Bilingual Information Retrieval from
the World Wide Web

Yehia Helmy1, Mohamed Nour2, Atef Ghalwash1, Mai Hamdallah1

The Faculty of Computers and Information, Helwan University1
The Electronics Research Institute, Cairo2

Abstract
This paper presents a proposal of a multi-agent information retrieval system to help users in finding
the required documents on the WWW. The proposed system architecture contains several components
mainly: the interface agent, learning agent, filtering agent, searching agent, user profile, text
information extractor, and others. The evolutionary mechanism of the proposed system is based on the
concepts of genetic algorithms (GAs). New filtering agents are created by the genetic operators such as
crossover and mutation. The filter agent filters the obtained results and lists to the user a reduced
number of documents with high probability of being relevant to him/her. That filtering is based on a
user profile such that the learning agent builds by analyzing the document examples presented by the
user.
Keywords:
Intelligent Agents, Search Engines, Information Retrieval, and Genetic Algorithms

 1. Introduction
Nowadays, there is a huge amount of data on the web. This means that there is information on
almost any topic available online. Search engines are a popular way to locate information. In
some cases, the information provided is too general to efficiently solve individual user's
information needs [1]. Although users differ in their specific interests, they tend to provide
short queries that do not adequately describe the specific information they seek. The same
results are shown to all users even though they may be looking for different types of
information [1]. Users of online search engines often find it difficult to express their need for
information in the form of a query. If users can identify examples of the kind of documents
they require then they can employ a technique known as relevance feedback [2]. Relevance
feedback covers a range of techniques intended to improve a user's query and facilitate
retrieval of information relevant to a user's information need. A user must revise a big number
of uninteresting documents and consult several search engines before finding relevant
information. To alleviate this problem, personalization becomes a popular remedy to
customize the web environment towards a user's preference [3].
Moreover, intelligent software agents can be used to find information several ways: 1) by
browsing, 2) by sending a query to a search engine or 3) by following existing categories in
search engines. Intelligent agents are programs that act on behalf of their human users to
perform laborious information-gathering tasks [3].
[4] presented an intelligent agent for information retrieval. That agent uses document
references gathered by a user to build a hierarchical model. The agent then uses the model to
interpret the queries and to filter the results returned by the search engines of the web. It also
uses information gathered while observing the ongoing activities of the user to select the most
relevant parts of this profile.
[5] mentioned that, genetic algorithms (GAs) constitute a different solution to profile
adaptation. Typically, a population of agents is maintained that collectively represent the user
interests.
[6,7] presented that, a significant problem in many information filtering systems is the
dependence on the user for the creation and maintenance of a user profile. 'News Weeder' is a
net-news filtering system that addresses that problem by filtering the user rate his/her interest
level for each article being read, and then learning a user profile based on these ratings.
The vast increase of multilingual content on the Internet has created the need for information
access across languages and cultures. Cross Language Information Retrieval (CLIR) is an
important area of research and development that aims to overcome the cross-lingual access

problem. This is done by enabling the users to retrieve documents written in one language –
often called the target language - based on queries typed in another - often called the source
or query language [8,9].
This paper is organized as follows: section 2 presents the objectives and related work. Section
3 presents the proposed multi-agent architecture. The implementation work and experimental
results are presented in section 4 while section 5 concludes the remarks.

2. Objectives and Related Work
A large number of papers describe systems that are related to what we are attempting here.
The most relevant ones are assistants for information retrieval, using mechanisms based on
filtering, learning or relevance feedback. These systems are using a model to represent
documents, abstracting the information that they may enclose [11]. Some developments
include [3, 4, 7, 10, 12, 13].
The main objective of this research work is to propose a multi-agent system for information
retrieval. The proposed system is different from those presented by others. Letizia,
Syskill&Webert, and Webnaut assist users browsing the Web using TF-IDF vectors [11] and
a naive Bayes classifier respectively. TF-IDF stands for term frequency and inverse document
frequency relationship. Syskill&Webert’s users use a three-point scale to rate pages on a
specific topic. The proposed system uses a five point scale to gather as information about the
user’s opinion in the documents presented to him/her.
The WebMate system as an example generates personal newspapers based on multiple TF-
IDF vectors each of them representing a topic of interest. Webnaut is an intelligent agent
system that uses a genetic algorithm to collect and recommend Web pages. A feedback
mechanism adapts to user interests as they evolve. Webnaut uses a metasearch agent to search
five search engines with a single query while the proposed system allows more than one
query modeling user interest to be used at the same time widening search range. NewsWeeder
[7] is a news filtering system which prioritizes USENET news articles for a user using the
minimum description length algorithm. The development of these agents was focused in the
accomplishment of some specific tasks, such as browsing assistance and news filtering, but
these techniques can not be reused in further agent developments with additional
requirements. Instead, the user profiling architecture we have presented supports the
development of capabilities shared by the majority of textual-based agents. This can
determine the relevance of a given piece of information, pro-actively suggest new information
and establish common information interests among a group of users.
AIRA [13] uses the mass of information residing on the user’s workstation to initialize a user
profile. This approach is accurate as asking the user to select documents s/he find interesting
as proposed by our system. PersonalSearcher [4] defines the user profile by using a textual
case-based reasoning approach in order to detect specific subjects that the user is interested in
and organizes them in a hierarchy.
All of the above works are monolingual (English). Our proposed system facilitates search in
both English and Arabic without burdening the user. This is done by translating the user
profile generated from the presented documents.

3. The Proposed Multi-Agents System Architecture
In this work, a multi-agent information retrieval system is proposed. The system elements
have the capability to support a user of extracting and retrieving information in both English
and Arabic languages. In this system, each user is assigned four distinct types of agents:
interface agent, learning agent, filtering agents, and search agents. Moreover, multiple users
can use the system at the same time but no interaction between them is permitted. The system
consists of several components as illustrated in Figure 1. Each component is described in
details as shown in the following sections. Before discussion, it is important to conduct the
web document representation as follows:

Figure 1: An Overview of the Proposed System Architecture

3.1 Web Document Representation
 The vector space model is used here to represent information included in Web documents.
The basic representation for the filtering agents as well as for the parsed HTML files is the
weighted keyword vector. When an HTML file is processed by the Text Information
Extractor, a clear-text version is generated. The text keywords can be weighted by using
formula (1)[12,18].

(1) where

§ tfi is the frequency of the keyword i in all texts in which it appears (term frequency);
§ tfmax is the maximum keyword frequency of all keywords in the user profile; and
§ N is the number of keywords in the user profile.

SEARCH AGENTS

FILTERING AGENTS

TEXT
INFORMATON
EXTRACTOR

LEARNING
AGENT

ENGLISH/ARABIC
USER PROFILE

INTERFACE AGENT

USER

INTERNET

SEARCH ENGINE

Recommendations

Results
Retrieval

Keyword Extraction

Search
Request

User
Evaluation

Credit Modification

Query analysis
& construction

Documents
Submission

Suggestions

Documents
Filtration

Feedback

English
Example

s

Query
Submission

ENGLISH –
ARABIC

DICTIONARY

[12] stated that the term frequency tf and the inverse document-frequency idf weighting
schema tf-idf is popular in similar applications, but a collection of documents is necessary be
applied. To implement the tf-idf weighting, the user must create a collection of documents. A
sufficient number of examples must be provided before the learning agent can begin the
process of searching for new information.

3.2 Text Information Extractor
This component, which consists of a lexical analyzer and a stop-word removal algorithm,
analyzes HTML pages producing a keyword vector. The lexical analyzer tokenizes the input
HTML page in three steps: It selects all hyperlinks in the document, removes the HTML tags,
and finally removes any script language commands. The stop-word algorithm removes all
high-frequency words such as “for” and “the,” all common words such as days and months,
and all numbers. (Common words are included in a word list file.) Then the extractor creates
a weighted keyword vector for the HTML page on hand.
Figure 1 visualizes the architecture of the proposed system. The user gives examples that
embody his/her interest and is then presented with a group of sites by the interface agent. S/he
then provides a feedback by rating the sites included. Based on the user’s ratings, credit is
assigned to the related filtering agents and the user profile weights are adjusted.

3.3 User Profile
User’s interests are extracted simply from documents presented by the user as examples. [14]
quoted that “A list of keywords is one of the most primitive representations of information
needs”. In information gathering, it is assumed that contents of a document can be
approximately expressed by a set of terms excerpted from the document. Additionally, all
words included in a document set are extracted to create a document vector (User Profile),
who’s every element consists of both a keyword and its weight. Using formula (1), user
profile keyword weights are also calculated.
The user profile which is maintained by the learning agent can be considered as a model of
what documents the user finds relevant. The user profile is considered a virtual document that
includes only those keywords of interest to the user.
User profiles are manipulated in one of two ways: First, the relevant documents are provided
as training examples by the user. Second, the user prompts the agent with how relevant an
encountered document is. The agent applies adjustments to the user profile according to the
relevance feedback provided. Moreover, if the user is interested in finding Arabic documents
matched with the presented document example, an Arabic user profile is built by translating
each keyword in the User Profile keyword vector through the English/Arabic dictionary. The
Arabic profile is used to match Arabic documents found on the WWW.

3.4 Filtering Agents (FAs)
A filtering agent is based on a keyword vector which is used to create the search query posted
to the search agents. In addition to a keyword vector, a filtering agent also contains other
information such as whether it was created by the user explicitly or not. If it was, it is treated
more favorably by giving it a relatively initial high fitness. Moreover, the genotype of the
information filtering agents is essentially a keyword vector. Each keyword is assigned a
randomly generated operator (AND, OR, NOT).
The filtering agents are considered filters that allow only the documents that are close to the
user profile’s weighted keyword vector to pass through. Each filtering agent selects the
documents that is closest to the user profile and calculates how confident is that the specific
document will interest the user.
In order for a filtering agent to assess its similarity to a given WWW page, it has to compare
the user profile to the vector representation of the text inside that page. As mentioned above,
each document is represented by a weighted keyword vector.
When two keyword vectors are compared for similarity, the cosine angle between them is
computed. Formula (2) is used to calculate the similarity between documents DS and DD [12].

(2) where

§ WDk and WSk are their weighted keyword vectors; and
§ N is the number of keywords.

3.5 Evolutionary Mechanisms
The evolution of the fitness agents is controlled by their individual fitness. The population is
split into two parts. A variable number of the top ranked (the best performers) of the whole
population in one part and the rest in another. The rank of an agent is based solely on its
fitness. Each part is allowed to produce offspring separately [9,15].
Moreover, new filtering agents are created by crossover or mutation. All operators are applied
to the evolvable part of the agents, the genotype. The other part of the agents, the phenotype
contains information that should not be evolved, usually instructions on how to handle the
evolvable part. Figure 2 illustrates the process of this mechanism.
The genetic operators applied on the FAs’ populations are:
a. Crossover: The one point crossover operator, given two filtering agents returns two new
agents that inherit a part of the keyword vectors of the parents. This operator randomly splits
the two keyword vectors, and then recombines them to produce two new keyword vectors,
precisely, creating two new agents. Keywords from the two keyword vectors are exchanged if
and only if the same words don’t appear in the new sets more than once.
b. Mutation: The mutation operator takes the genotype of an agent as argument and creates
a new agent that is a randomly modified version of its parent. The new “mutated” keyword is
a randomly selected keyword from the user profile.

 No

 Yes

Figure 2: The Process of the Evolutionary Genetic Algorithms

Assess Initial FA Population

Select FA Population

Crossover New FA Population

Generate Initial FA Population

Mutate New FA Population

Assess New FA Population

Terminate
Search?

Stop

The system keeps track of all the fitness agents generated. No two agents, in all the generated
populations, can have the same genotype. So, if during crossover, any of the new offspring’s
genotype is identical to another agent (in the same generation or in a previous one), the
agent’s genotype is mutated to ensure that the generated agent is unique.

3.6 Search Agents (SAs)
Each filtering agent issues requests to search agents about the type of documents they are
interested in finding. Each request includes a search query (list of keywords) and the ID of the
filtering agent that made the request. Each Search Agent randomly selects which Filtering
Agents’ requests to fulfill. This happens in the following way: All Filtering Agents’ requests
are placed on a blackboard. When a Search Agent selects a request, that request is erased
from the blackboard. Then the system proceeds to the next Search Agent, until all Filtering
Agents’ requests are fulfilled.
A search agent is based on a query string that it should utilize when querying the WWW
search engines (Google in this case). A distinct characteristic of search agents include that
they are parasitic in the sense that they are utilizing existing WWW search engines to find
information and not dig it up on their own.
Search Agents are responsible for posting queries to Google, collect the results and present
them to the filtering agents that requested them. If a link is already visited by the user or
already proposed to him or her, it is not considered again. For each of the remaining links, the
system fetches its HTML contents, processes them and saves them for consideration by the
related filtering agent later on. All retrieved URLs are stored in a database. The database is
used for keeping track of the URLs previously presented to prevent presentation of duplicate
information to the user.

3.7 Interface Agents (IAs)
Not all documents introduced by filtering agents are presented to the user. The interface agent
decides if the filtering agent is going to present something to the user by ranking the proposed
documents using formula (3) (confidence level) [15,16,17]:

Ci = sim(DD,DS) . Fi (3) where

§ i is the document number; and
§ F is the fitness of the filtering agent that proposed the document.

Only those documents that the interface agent is confident that they would resemble the user
interest according to their confidence level then introduced to the user. The top n documents
are selected from the ranked list, where n is a number that indicates the amount of items that
the user is interested in including in one result page.
Highly relevant documents are presented through a simple interface that lets the user rate the
results according to the categories in Table 1. This direct feedback ensures system
responsiveness to changes in user navigation behavior as users select links to topics not
included on their original agendas.
One would notice that if an information filtering agent doesn’t present anything to the user
then its credit would remain constant. To diminish the fitness of inactive agents, the fitness of
those agents is adjusted according to a linear decay function.
We suggested the values which are similar to the AND column in Table 1 as the difference
between each user feedback situation and the other is recognizable opposite to the values in
the OR and NOT columns.

r

User’s feedback Query keywords

 AND OR NOT

Terms not part
of the query

Fitness agent
that provided
the document

Very interesting 2 1 -2 2 2

Interesting 1 1 -1 1 1

Indifferent 0 0 0 0 0

Irrelevant -1 -1 0 -1 -1

Very irrelevant -2 -1 0 -2 -2

Table 1: The scale of values for grading documents. The keywords forming the query, terms

that are not part of the query, and the Fitness Agent that presented the document.

3.8 Learning Agents (LAs)
Other than building the user profile, the Learning agent alters the frequencies of words that
are in the User Profile and filtering agents according to the user’s rankings on specific
documents. Changes are applied according to the formula (4) [12,17,18].

 (4) where

§ TfD is the word frequency in the Dictionary;
§ TfR is the word frequency in the recommended URL; and
§ r is the user’s evaluation in the range -2 to 2.

The exact combination of words and logical operators that brings about each recommended
URL is known so as the Filtering agent that obtained it. As a result, formula (4) is applied not
only to common words as described above, but also to the words that form the exact query.
Using formula (4), the learning agent recalculates the weight of each word in the User Profile
as well as the fitness of the specified filtering agent.
4. Implementation
The proposed multi-agent system architecture discussed above was developed, implemented,
and applied. The development was done on an IBM/PC supported by the Microsoft Windows
XP operating systems. Several software tools were used during the implementation mainly:
Java software development kit JSDK1.5, Java Server Pages (JSP), Google API1s, and
Hypertext Markup Language (HTML). To run the developed system, the environment should
be supported by Tomcat, Apache Server, and JDK1.4.1.
Moreover, the system permits the emulation of Tomcat, Jakarta, and Apache. Figure 3(a)
represents a snapshot of the system’s input form. Here, the user specifies the path of the
document example that embodies his/her interest whether on disk or on the WWW. The
search language is also specified. Figure 3(b) provides an example of the system’s results
page. The top 10 documents presented to the user are those that the system is confident that
they are closest to the user’s interest. For each document, the following information is
available to the user: its title, a snippet, its URL, and a combo box for the user to provide the
degree of interest in this particular document.
An example of part of the document the user gave as input to the system is shown in figure 4.

 (a)

 (b)

Figure 3: System snapshots (a) Input form (b) Results presentation and user evaluation
collection

Genetic Algorithms were invented to mimic some of the processes observed in natural
evolution. Many people, biologists included, are astonished that life at the level of complexity
that we observe could have evolved in the relatively short time suggested by the fossil
record. The idea with GA is to use this power of evolution to solve optimization problems.
The father of the original Genetic Algorithm was John Holland who invented it in the early
1970's. ……

Figure 4: Part of the Document the User Gave as Input to the System

4.1 Experiments Results
Concerning the experimental work, figure 5 demonstrates a sample of queries randomly
generated from the user profile. The size here is five keywords per query. Figures 5(a) and
5(b) show examples of both English and Arabic queries respectively.

 offspring OR solution OR problem OR fitness NOT population
crossover AND population OR parent OR genetic NOT selection (a)
population individual OR fitnes OR selection NOT problem

 (b)

••• AND •••••• OR

Figure 5: Sample of Queries Generated

Table 2 shows part of the English user profile created from the file in Figure 4. Table 3 shows
a division of the Arabic user profile generated when a user chose to search for Arabic
documents providing the file in figure 4 (English text) as input (user interest).

Keyword Frequency Weight
Genetic 23 0.362711

algorithm 27 0.425791
problem 6 0.09462
Search 13 0.205011
Space 7 0.11039

selection 11 0.173471
. . .

individual 25 0.394251
generation 13 0.205011
population 18 0.283861

solution 18 0.283861

Table 2: English User Profile

The translation of the user profile was carried out using the English-Arabic online Dictionary
ectaco. Available at www.ectaco.co.uk

Keyword Frequency Weight
••••••

 23 0.362711

••••• 27 0.425791
 •••••

 6 0.09462
••• 13 0.205011
••• 7 0.11039
•••••• 11 0.173471

. . .
••• 25 0.394251
••• 13 0.205011
•••• 18 0.283861
•• 18 0.283861

Table 3: Arabic User Profile

In our set of experiments, the system was setup to work with four Filtering agents. Each
Filtering agent has five terms per query. The system was run for three times with the same
user profile. The average number of documents presented by each generation of the three
times is presented in Figure 6(b). Figure 6(a) shows that 43% of the documents presented to
the user are very relevant (vr), 13% are relevant (r), 10% are neutral (n), 27% are irrelevant
(ir) , and 7% are very irrelevant (vir) based on user feedback. The changes in the fitness of
filtering agents as a result to user feedback in each generation are shown in Figure 7.

Figure 6: (a) The percentage of documents returned in each relevance group, (b)The number of
documents presented in each generation grouped by relevance value.

Figure 7: Changes Applied to Filtering Agents' Fitness According to User Relevance Feedback

5. Conclusions and Recommendations
We have presented a multi-agent information retrieval system, capable of generating user
queries to apply search and evaluating the results according to a user’s interests.
Moreover, this work discussed the idea of using evolving populations of agents for
personalized information filtering and search. In particular, we introduced the idea of
integrating different types and populations of agents; Interface, Learning, Filtering, and
Search Agents into an ecosystem. Different agents compete and cooperate as the ecosystem

0%

10%

20%

30%

40%

50%

vr r n ir vir

User Feedback

D
oc

um
en

ts
 P

re
se

nt
ed

0
2
4

6
8

vr r n ir vir

User Relevance

N
um

be
r

of

D
oc

um
en

ts

First Generation Result

Second Generation Results

Third Generation Results

First Generation

0

0.2

0.4

0.6

0.8

1 2 3 4

Filtering Agent Id

Fi
tn

es
s

Before User Feedback After User Feedback

Second Generation Agents

0
0.1
0.2
0.3
0.4
0.5
0.6

1 2 3 4

Filtering Agent Id

Fi
tn

es
s

Before User Feedback After User Feedback

Third generation

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4

Filtering Agents Id

Fi
tn

es
s

evolves towards better fitness levels. Based on the proposed architecture, we have built a
working system that provides to its users personalized information from the World Wide
Web. Agents that are of service to users or other agents will run more often, reproduce, and
survive while incompetent agents will be removed from the population. We have also shown
that the system can apply a bilingual search covering a wider range of user needs. The
experiments showed that the system can indeed converge to areas interesting to its users
providing elite results. Several experiments were applied and run and the results were close to
those presented before.
One important aspect of our design is the separation of agents. We are hoping to extend our
experiments in multiple user domains where each user will have its own set of filtering agents
but they will be able to share their search agents. In this case, a new user would not have to
train its own search agents but utilize the existing ones that were already trained by the other
users. Further more the separation of filtering and search agents provides the ability to support
real online operation in the future, where users connect to their Internet service provider, send
out requests and get the results by the time they reconnect. The search agents would collect all
the documents requested and the information filtering agents present them to the user upon re-
connection to the network. The user's filtering agents would do then all filtering and generate
the digest. We should also note at this point that although we concentrated on document
retrieval and evaluation, the same approach can in principle be applied to other media like
image and audio, for which features can be automatically extracted. Such a research direction
would further increase the system’s scope.
Our system models a user’s changing information need within a search session. We would
like to expand our research to handle longer term models and implicit feedback from a user’s
browsing patterns between sessions. Further more, expanding dictionary terms and languages
handled in it will help bridging the gap made due to language constraints and serve a wider
range of people working in different domains with different languages.

6. References
1. Trajkova, J., and Gauch, S., " Improving Ontology-Based User Profiles", The Proceedings of RIAO

2004, University of Avignon (Vaucluse), PP. 380-389, France, 2004.
2. Shahabi, C. and Chen, Y., "Web Information Personalization: Challenges and Approaches", The 3nd

International Workshop on Databases in Networked Information Systems (DNIS 2003), Aizu-
Wakamatsu, Japan, 2003.

3. Chen, L. and Sycara, K., "WebMate: A Personal Agent for Browsing and Searching", The
Proceedings of the 2nd International Conference on Autonomous Agents and Multi Agent Systems,
AGENTS '98, ACM, PP.132-139, 1998.

4. Daniela, G.and Analía, A., "PersonalSearcher: An Intelligent Agent for Searching Web Pages", The
Proceedings of the International Joint Conference, 7th Ibero-American Conference on AI:
Advances in Artificial Intelligence, Lecture Notes in Computer Science; Vol. 1952, PP.43-52,
2000.

5. Douglas, W. O. and Bonnie, D., "Evaluating Cross-Language Text Retrieval Effectiveness", The
Cross-Language Information Retrieval, Gregory Grefenstette, ed., Kluwer Academic, PP. 151-161,
1998.

6. Lieberman, H., "Letizia: An Agent that Assists Web Browsing", The Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence (IJCAI’95), PP. 924–929, 1995.

7. Lang, K., "NewsWeeder: Learning to Filter News", The Proceedings of the 12th International
Conference on Machine Learning (ICML-95), Lake Tahoe, CA., PP.331-339, 1995.

8. Demetriou, G., Skadina, I., Keskustalo, H., Karlgren, J., Deksne, D., Petrelli, D., Hansen, P.,
Gaizauskas, R.and Sanderson, M., " Cross-lingual Document Retrieval, Categorisation and
Navigation Based on Distributed Services", The First Baltic Conference. Human Language
Technologies- The Baltic Perspective. Riga, Latvia. PP.107-114, 2004.

9. Weiguo, F., Michael, D. G., and Praveen, P., "Discovery of Context-Specific Ranking Functions for
Effective Information Retrieval Using Genetic Programming", The IEEE Transactions on
Knowledge and Data Engineering, Vol. 16, No. 4, PP. 523-527, 2004.

10. Pazzani, M., Muramatsu, J., and Billsus, D., "Syskill & Webert: Identifying Interesting Web Sites",
The Proceedings of the 13th National Conference on Artificial Intelligence. Vol 1, PP. 54–61,
1996.

11. Salton, G. and McGill, M.J., "Introduction to Modern Information Retrieval", McGraw-Hill Inc.,
1983.

12. Zacharis, Z. N. and Panayiotopoulos, T., "Web Search using a Genetic Algorithm", The IEEE
Internet Computing, Vol. 5 No. 2:, PP.18-26, 2001.

13. Bottraud, J.C., Bissom, G., Bruandet, M.F., "An Adaptive Information Retrieval Research Personal
Assistant", The Workshop (AI2IA) of Artificial Intelligence and Information Access and Mobile
Computing – The International Joint Conference on Artificial Intelligence, Acapulco, Mexico,
2003.

14. Lingras, P.J. , "Evolutionary Information Retrieval", The Proceedings of the Fifth Joint
Conference on Information Sciences, Vol. 1, PP.166-169., 2000.

15. Alexandros, M. and Pattie, M., "Amalthaea: An Evolving Multi-Agent Information Filtering and
Discovery System for the WWW, Autonomous Agents and Multi-Agent Systems, Vol.1 No.1,
PP.59-88, 1998.

16. Schiaffino, S., and Amandi, A., "User - Interface Agent Interaction: Personalization Issues", The
International Journal of Human-Computer Studies, Vol.60 No.1, PP.129-148, 2004.

17. Zhiming, J., (1999): "Survey Report on Cross- Language Text Retrieval", 1999.
18. Monika, H., "The Past, Present, and Future of Web Information Retrieval", The Proceedings of the

SPIE, Vol. 5296, PP. 23-26, 2003.

